Antibiotic Resistance: Causes, Consequences & Local Scene

KW Choi Associate Consultant ICB, CHP/ IDCTC, HA

Neu HC. Science 1992; 257:1064-73

Antibiotic Resistance – A Global Problem

Driving force for antibiotic resistance

- Inadequate national commitment to a comprehensive and coordinated response, ill-defined accountability and insufficient engagement of communities;
- Weak or absent surveillance and monitoring systems;
- Inadequate systems to ensure quality and uninterrupted supply of medicines;
- Inappropriate and irrational use of medicines, including in animal husbandry;
- Poor infection prevention and control practices;
- Depleted arsenals of diagnostics, medicines and vaccines as well as insufficient research and development on new products.

WHO factsheet on Antimicrobial resistance

Resistance to antibacterial agents

- Antibiotic resistance either arises as a result of innate consequences or is acquired from other sources
- Bacteria acquire resistance by:
 - mutation: spontaneous single or multiple changes in bacterial DNA
 - addition of new DNA: usually via plasmids, which can transfer genes from one bacterium to another
 - transposons: short, specialised sequences of DNA that can insert into plasmids or bacterial chromosomes

Mechanisms of antibacterial resistance (1)

- Structurally modified antibiotic target site, resulting in:
 - reduced antibiotic binding
 - formation of a new metabolic pathway preventing metabolism of the antibiotic

Mechanisms of antibacterial resistance (2)

- Altered uptake of antibiotics, resulting in:
 decreased permeability
 - increased efflux

Altered uptake of antibiotics: decreased permeability

Altered uptake of antibiotics: decreased permeability

Altered uptake of antibiotics: increased efflux

Altered uptake of antibiotics: increased efflux

Mechanisms of antibacterial resistance (3)

- Antibiotic inactivation
 - bacteria acquire genes encoding enzymes that inactivate antibiotics
- Examples include:
 - $-\beta$ -lactamases
 - aminoglycoside-modifying enzymes
 - chloramphenicol acetyl transferase

Antibiotic inactivation

Antibiotic inactivation

Antibiotic inactivation

Major classes of antibiotics & resistance mechanisms

Antibiotic	Mechanism of action	Major resistance mechanisms
β-Lactams	Inactivate PBPs (peptidoglycan synthesis)	 β-lactamases
		 Low affinity PBPs
		 Efflux pumps
Glycopeptides	Bind to precursor of peptidoglycan	 Modification of precursor
Aminoglycosides	Inhibit protein synthesis (bind to 30S subunit)	 Modifying enzymes (add adenyl or Phosphate)
Macrolides	Inhibit protein synthesis (bind to 50S subunit)	 Methylation of rRNA
		 Efflux pumps
(Fluoro)Quinolones	Inhibit topoisomerases (DNA synthesis)	 Altered target enzyme
		Efflux pumps

β-Lactamases: Classification

Modified Bush–Jacoby–Medeiros Classification of β –Lactamases

Functio Group	onal Substrate profile	Molecular Class	Inhibitor	Example
1	Cephalosporinase	С	Оха	AmpC, MIR-1
2a	Penicillinase	Α	Clav.	S.aureus
2b	Broad spectrum	Α	Clav.	TEM-1/2, SHV-1
2be	Extended spectrum	Α	Clav.	TEM 3-29, TEM46-104 SHV2- 28. CTX-M types
2br	Inhibition resistant	Α	-	TEM 30-41 (IRT1-12)
2c	Carbenicillinase	Α	Clav.	PSE-1
2d	Oxacillinase	D	(Clav.)	OXA-1 (OXA-2 &-10 derived
2e	Cephalosporinase	Α	Clav.	FPM-1 <i>P. vulgaris</i> , CepA <i>B.</i>
2f	Carbapenemase	Α	Clav.	IMI-1, NmcA, Sme 1-3
3	Metallo-enzyme	В	•	S.maltophilia
4	Penicillinase	•	-	B.cepacia

Antimicrobial features of ESBLs

- Inhibited by β -lactamase inhibitors
- Usually confer resistance to:
 - first-, second- and third-generation cephalosporins (eg ceftazidime)
 - monobactams (eg aztreonam)
 - carboxypenicillins (eg carbenicillin)
- Varied susceptibility to piperacillin/tazobactam
- Typically susceptible to carbapenems
- Often clinically and/or microbiologically non-susceptible to fourth-generation cephalosporins

Antimicrobial features of carbapenem resistance

- Natural resistance is chromosomally mediated
 naturally occurring carbapenemases
- Acquired resistance is plasmid-mediated, involving various mechanisms
 - most commonly by carbapenemases (especially in Gram-negative bacteria)
 - reduced affinity of target PBPs
 - decreased membrane permeability (Gram-negative bacteria)
 - active efflux pumps
- Mechanisms can co-exist and vary by pathogen

Antimicrobial features of carbapenem resistance: carbapenemases

- Carbapenemases are a major source of acquired resistance in Gram-negative bacteria
- Belong to three different molecular classes of β-lactamases:
 - class B metallo-enzymes (eg IMP, VIM, NDM-1)
 - class D oxacillinases (OXA-23 to OXA-27)
 - class A clavulanic acid-inhibited enzymes (eg SME, NMC, IMI, KPC)

Antimicrobial features of MRSA

- Mechanism involves altered target site
 - new penicillin-binding protein PBP 2' (PBP 2a)
 - encoded by chromosomally located mecA gene
- Confers resistance to all β-lactams
- Cross-resistance common with many other antibiotics
- Gene carried on a mobile genetic element staphylococcal cassette chromosome *mec* (SCC*mec*)

Hiramatsu et al. Trends Microbiol 2001;9:486–493 Berger-Bachi & Rohrer. Arch Microbiol 2002;178:165–171

Antimicrobial features of VRE

- Development is slow due to very complex gene mechanisms:
 - Alters pentapeptide precursor end sequence from D-alanyl-D-alanine to D-alanyl-D-x, where x is lactate, serine or other amino acid
 - Or produces (vanY) tetrapeptide that cannot bind vancomycin

Antimicrobial features of VISA

- Mechanism not fully understood, but a combination of:
 - increased quantities of PBPs causing extracellular trapping
 - altered cell wall proteins reducing permeability

Antimicrobial features of VRSA

 Mechanism due to acquisition by conjugative process of vanA from enterococci

MDRO situations in HA hospitals 2009 - 2010

Incidence	MRSA BSI	VRSA	VRE	ESBL+ NR	CRE/ CRE PCR +ve	CRA/ MDRA	CRPA/ MRPA
2009	0.17 /1000 acute bed days	No	0.2% Sporadic outbreaks in hospitals	20-25%	0.05 to 0.07% / NA	39% MDRA= 2.6 to 4%	4.75% MRPA= 0.1%
2010	0.15 / 1000 acute bed days	No	0.4% (3 outbreaks involved 28 patients)	20-25%	0.19% / 13 cases	? MDRA= 2.1%	4.62% MRPA= 0.1%
Trend	Decreasing (12%↓cf 2009; 21%↓ cf 2007)	No	Slightly increasing	stable	Low but increasing	MDRA: Slightly decreasing	stable

MRPA=concomitant R to Imipenem, Ceftazidime. Amikacin and Ciprofloxacin

MDRA= concomitant R to Fluoroquinolones, Aminoglycosides, Cephalosporins and BL/BLase inhibitor combinations

Courtesy of CICO Office, HA

Streptococcus pneumoniae:

- Penicillin intermediate susceptibility or resistance
- Widespread macrolide resistance
- Emerging fluoroquinolone resistance

Ip et al JCM 1999

Ip M et al. AAC 2001

Ho PL et al. JAC 2000 Ho PL et al. EID 2001

Data from PHLSB, CHP

- Enterobacteriaceae:
 - Up to 20% of E. coli and 9% of Klebsiella spp. from urine specimens at out-patient settings are ESBL producers
- Nisseria gonorrhoeae:
 - Established fluoroquinolone rersistance
 - Emerging ceftibuten resistance
- TB:
 - Annual rate ~ 90/100000 population
 - MDR-TB ~ 1%
 - XDR-TB ~ 0.1%

Kam KM et al. STD 1996

Lo JY et al. AAC 2008

• TB:

- Annual rate ~ 90/100000 population
- MDR-TB ~ 1%
- XDR-TB ~ 0.1%

Antibiotic use, resistance, treatment failure and healthcare burden: a vicious circle

- increased morbidity
- more antibiotics

Increased use of healthcare resources

Increased hospitalisation • more antibiotics

Trends in Development of New Antibacterials

*p = 0.007 by linear regression

New antibacterial agent = new molecular entity (NME) with antimicrobial properties, administered for systemic infection; topical agents, immunomodulators excluded

Edwards J, ICAAC, 2003

BAD BUGS, NO DRUGS

As Antibiotic Discovery Stagnates ... A Public Health Crisis Brews

TABLE OF CONTENTS

The Next Epidemic Begins	1
Executive Summary	3
Resistance on the Rise	9
The Ppeline of New Antibiotics is Drying Up	4
The Federal Government's Response	0
innovative Federal Policy and Immediate Action Are Needed	2
Recommendations for Congress	3
Recommendations for FDA	1
Recommendations for NIAID	8
New Funding Needed	9
Condusion	1
References	12

Tables

Estimated Cases of Hospital-Acquired infections Caused by Selected Resistant Bacteria in the United States in 2002	9
History of Antibiotic Discovery and Approval	10
Percent of Drug Resistance in Hospital-Acquired Infections in 2002	
New Antibacterial Agents Approved Since 1998	15

Charts

Resistant Strains Spread Rapidly		11
Antibacterial Agents Approved,	1983-2004	15

Infectious Diseases Society of America

July 2004

