Infection Control Guidelines on Nephrology Services in Hong Kong
2012

2nd Edition (Ver. 2.1)
(Advanced draft)

Jointly prepared by
Infection Control Branch, Centre for Health Protection, Department of Health
and
Central Renal Committee, Hospital Authority
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Last Updated Date</th>
<th>Summary of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>September 2016</td>
<td>- Anti-HCV and ALT should be tested at least every 6 months for anti-HCV negative haemodialysis patients</td>
</tr>
<tr>
<td>2</td>
<td>November 2012</td>
<td>-</td>
</tr>
</tbody>
</table>

Acknowledgements

We would like to thank the following parties for their valuable contribution to the preparation of this infection control guideline:

I. Renal Working Group (2nd Edition)

<table>
<thead>
<tr>
<th>Chairman</th>
<th>Dr. WONG Tin-yau</th>
<th>Head, Infection Control Branch Centre for Health Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-chairman:</td>
<td>Dr. TONG Kwok-lung</td>
<td>Central Renal Committee, Hospital Authority</td>
</tr>
<tr>
<td>Members:</td>
<td>Dr. LUI Siu-fai</td>
<td>Hong Kong Kidney Foundation Limited</td>
</tr>
<tr>
<td></td>
<td>Dr. Raymond YUNG</td>
<td>Specialist in Microbiology, Private Sectors</td>
</tr>
<tr>
<td></td>
<td>Dr. LI Fu-kuang</td>
<td>Specialist in Nephrology, Private Sectors</td>
</tr>
<tr>
<td></td>
<td>Dr. Tina MOK</td>
<td>Office for Registration of Healthcare Institution, Regulatory Affairs and Health Services, Department of Health</td>
</tr>
<tr>
<td></td>
<td>Dr. Dominic TSANG</td>
<td>Chief Infection Control Officer, Hospital Authority</td>
</tr>
<tr>
<td></td>
<td>Dr. LUK Shik</td>
<td>Associate Consultant, Infection Control Branch, Centre for Health Protection</td>
</tr>
<tr>
<td></td>
<td>Mr. Norman SIU</td>
<td>Health Sector Division, Electrical and Mechanical Services Department</td>
</tr>
<tr>
<td></td>
<td>Ms. Pauline LI</td>
<td>Hong Kong Renal Centre Limited</td>
</tr>
<tr>
<td></td>
<td>Ms. Patricia CHING</td>
<td>Hong Kong Infection Control Nurses Association</td>
</tr>
<tr>
<td></td>
<td>Ms. Irene KONG</td>
<td>Hong Kong Association of Renal Nurses</td>
</tr>
<tr>
<td></td>
<td>Ms. Bonnie TAM</td>
<td>Renal Specialty Core Group, Hospital Authority</td>
</tr>
<tr>
<td></td>
<td>Ms. LUNG Wan-tin</td>
<td>Advanced Practice Nurse, Infection Control Branch, Centre for Health Protection</td>
</tr>
</tbody>
</table>

II. Ex-Member of Renal Working Group (1st Edition)

<table>
<thead>
<tr>
<th>Dr. Alex YU</th>
<th>Central Renal Committee, Hospital Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Monica WONG</td>
<td>Office for Registration of Healthcare Institution, Regulatory Affairs and Health Services, Department of Health</td>
</tr>
<tr>
<td>Ms. Frances CHIU</td>
<td>Hong Kong Association of Renal Nurses</td>
</tr>
<tr>
<td>Mr. Albert POON</td>
<td>Health Sector Division, Electrical and Mechanical Services Department</td>
</tr>
<tr>
<td>Dr. Vivien CHUANG</td>
<td>Associate Consultant, Infection Control Branch, Centre for Health Protection</td>
</tr>
<tr>
<td>Ms. Jane LEUNG</td>
<td>Advanced Practice Nurse, Infection Control Branch, Centre for Health Protection</td>
</tr>
<tr>
<td>Ms. NG Wai-po</td>
<td>Registered Nurse, Infection Control Branch, Centre for Health Protection</td>
</tr>
</tbody>
</table>
III. Consultation Parties:

The medical and nursing staff of the following renal units:

- Pamela Youde Nethersole Eastern Hospital
- Queen Mary Hospital
- Tung Wah Hospital
- Queen Elizabeth Hospital
- United Christian Hospital
- Caritas Medical Centre
- Kwong Wah Hospital
- Princess Margaret Hospital
- Alice Ho Miu Ling Nethersole Hospital
- Prince of Wales Hospital
- Tuen Mun Hospital

Speciality advisory group of infection control nurses, Hospital Authority
TABLE OF CONTENTS

FOREWORD ... 7

1. VIRAL HAZARDS .. 8
 1.1 POTENTIAL RISKS FOR TRANSMITTING BBV IN DIALYSIS UNITS 8
 1.2 PREVENTION OF BBV TRANSMISSION IN DIALYSIS UNITS 9

2. BACTERIAL HAZARDS .. 10
 2.1 PREVENTION AND CONTROL OF MULTI-DRUG RESISTANT ORGANISMS 10
 2.2 PREVENTION AND CONTROL OF TUBERCULOSIS ... 12

3. PREVENTION OF DIALYSIS-ASSOCIATED RISKS 14
 3.1 PREVENTION OF HAEMODIALYSIS-ASSOCIATED INFECTIONS 14
 3.2 PREVENTION OF PERITONEAL DIALYSIS RELATED INFECTIONS 16
 3.3 PATIENT EDUCATION ... 17
 3.4 STAFF TRAINING .. 18

4. SEROLOGY SCREENING FOR BBV IN DIALYSIS UNITS 19
 4.1 HBV STATUS IN PATIENTS .. 19
 4.2 HBV STATUS IN STAFF ... 19
 4.3 HCV STATUS IN PATIENTS .. 20
 4.4 HIV STATUS IN PATIENTS .. 20
 4.5 HANDLING OF NEWLY IDENTIFIED BBV INFECTIONS IN DIALYSIS UNITS 20

5. IMMUNIZATION .. 22
 5.1 HEPATITIS B VACCINATION ... 22
 5.2 INFLUENZA VACCINATION ... 23
 5.3 PNEUMOCOCCAL VACCINATION ... 24
6. WATER TREATMENT SYSTEM ... 25
 6.1 WATER TREATMENT AND DISTRIBUTION SYSTEM 25
 6.2 HEMODIALYSIS/ HEMODIAFILTRATION MACHINES 27
 6.3 QUALITY OF WATER FOR DIALYSIS .. 28
 6.4 REPROCESSING OF DIALYZERS .. 30
7. INFECTION CONTROL PRACTICES IN RENAL UNITS 31
 7.1 FACILITY SETTING ... 31
 7.2 HAND HYGIENE .. 32
 7.3 PERSONAL PROTECTIVE EQUIPMENT (PPE) 33
 7.4 EQUIPMENT AND INSTRUMENT ... 34
 7.5 MEDICATIONS .. 35
 7.6 ENVIRONMENTAL CONTROL .. 36
 7.7 WASTE MANAGEMENT ... 38
8. HOME DIALYSIS ... 40
 8.1 HOME HEMODIALYSIS ... 40
 8.2 HOME PERITONEAL DIALYSIS .. 41
 8.3 MANAGEMENT OF WASTE AND ENVIRONMENTAL CLEANING AT HOME 42
9. OCCUPATIONAL SAFETY AND HEALTH ... 43
 9.1 BLOOD AND BODY FLUID EXPOSURE ... 43
 9.2 CHEMICAL DISINFECTANTS .. 45
10. SURVEILLANCE .. 47
11. QUALITY MEASURES ... 48
12. FREQUENTLY ASKED QUESTIONS (FAQS) .. 49
APPENDIX A: HAND HYGIENE TECHNIQUE .. 50
REFERENCE LIST .. 51
FOREWORD

While working or staying in nephrology service unit, one is liable to exposure to various pathogens. Effective infection control strategies are therefore essential to provide a safe environment for both patients and staff. [1-19]

This guideline is produced by a working group established by the Infection Control Branch, Centre for Health Protection and the Central Renal Committee, Hospital Authority. The membership of the working group for the second edition includes representatives from the Hong Kong Kidney Foundation, specialists in nephrology and microbiology from private sectors, the Office for Registration of Healthcare Institution in Department of Health, the Chief Infection Control Officer in Hospital Authority, the Electrical and Mechanical Services Department of Hong Kong government, the Hong Kong Renal Centre, the Hong Kong Infection Control Nurses Association and the Hong Kong Association of Renal Nurses.

The guideline intends to provide practical infection control information in both clinical and home dialysis settings. It outlines new evidence and approaches in delivering infection control practices, and highlights the principles set out in various local and international advisory and guidance documents. A total of twelve sections are contained in the guideline, covering issues that include pathogens commonly encountered in the nephrology services, immunization, quality management as well as practical control measures in clinical, home and occupational settings. Healthcare workers in nephrology service units should have a thorough understanding of the guideline and be able to provide appropriate training for other relevant staff, if indicated.

This guideline, however, is not meant to be exhaustive, in view of continuously emerging biological hazards and control measures. Updated information can be obtained from the Infection Control Branch, Centre for Health Protection of the Department of Health and the Central Renal Committee, Hospital Authority.

We thank the members of the working group who have contributed so much of their knowledge, expertise and time to produce this guideline.
1. VIRAL HAZARDS

In renal dialysis units, blood-borne viruses (BBV) are an infectious hazard and may be transmitted by blood transfusion, parenteral inoculation or acquired during dialysis procedures, mainly as a result of lapses in infection control practices. [1] Documented reports of outbreaks in renal dialysis units include hepatitis B virus (HBV) [20-32], hepatitis C virus (HCV) [17;33-35], and human immunodeficiency virus (HIV) [36;37]. Local data on seroprevalence in 2004 indicated that 9.68% and 3.28% of patients in our renal units had HBV and HCV respectively. [38] In order to reduce the risk of infection, adherence to infection control precautions should be carefully addressed.

1.1 Potential risks for transmitting BBV in dialysis units

The most common causes known to be responsible for BBV transmission in dialysis units are as follows:

1.1.1 Sharing of multi-dose vials of drugs. [17;20-24;26;32;33]

1.1.2 Caring patient with contaminated hands or gloves as the healthcare workers have not properly performed hand hygiene or changed their gloves. [20;27;32;34;35]

1.1.3 Failing to clean and disinfect dialysis machines, equipment, supplies and environmental surfaces properly when they are shared between patients. [22;32;33;36;37]

1.1.4 Failing to prevent contamination of parenteral medications which are prepared on common mobile medication carts at patients' dialysis stations. [32;33]

1.1.5 Failing to identify and isolate patients who are positive for the hepatitis B virus (HBV). [1;20-22;27;28;32]

1.1.6 No dedicated hemodialysis machines, equipment, supplies or staff for the HBsAg positive patients. [20-22;27;30-32]

1.1.7 Failing to vaccinate susceptible patients against HBV. [20;21;25;32;39]
1.2 Prevention of BBV transmission in dialysis units

Based on the above experiences, the following guidelines should be strictly observed in addition to those stipulated in section 7 of this document, so as to prevent any potential risks which may arise in hemodialysis, especially for patients with hepatitis B:

1.2.1 Isolate HBsAg-positive patients in a separate room or cubicle. [32]

1.2.2 Dedicate staff for HBsAg-positive patients in the same dialysis session, if possible. [32]

1.2.3 Dedicate dialysis machines, equipment, instruments, medications and supplies for HBsAg-positive patients. [32]

1.2.4 Do not reuse dialyzers. [32]

1.2.5 Vaccinate all susceptible patients against hepatitis B. [32]
2. BACTERIAL HAZARDS

2.1 Prevention and Control of Multi-Drug Resistant Organisms

Multi-drug resistant organisms (MDROs) have emerged as important pathogens of nosocomial infections among hospitalized patients, including those with chronic renal failure. The impact of MDROs on renal patients was evident in increasingly common reports of methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant enterococci (VRE), vancomycin-intermediate *Staphylococcus aureus* (VISA) and vancomycin-resistant *Staphylococcus aureus* (VRSA) in this group of patients, as well as ongoing outbreaks of MDROs in hemodialysis centres. [40] The morbidity and mortality of renal patient with invasive MDRO infections are significantly higher than the other patient groups. [22;40;41] Risk factors for the selection or acquisition of MDROs in renal patients include the use of vancomycin or other broad-spectrum antibiotics, frequent visits to healthcare settings, indwelling catheters and weakened immune status. [32;41;42] Furthermore, the prolonged survival of MDROs in the environment facilitates nosocomial transmission by direct patient-to-patient contact or indirectly from healthcare workers to patients via contaminated environmental surfaces and patient care equipment. [16;32]

2.1.1 The prudent use of antibiotics is of paramount importance in the prevention of MDROs. Please refer to the IMPACT guidelines on antibiotic use, which can be accessed at the following link:

2.1.2 Contact precautions, in addition to the Infection Control Practices in Renal Units (please refer to section 7), should be applied in order to prevent and control the transmission of MDROs in dialysis units as follows:

a. Physical isolation

- Patients with MDROs should preferably be isolated in a single room, [43-45] especially for patients with: VRE/ VISA/ VRSA/ CRE/ MRPA /pan-drug resistant *Acinetobacter baumannii* (PDRAB).

- If the above is not feasible, cohort patients with the same MDRO in the same room or cubicle. [43-45]

- A corner bed is the third choice. [43]
b. Perform hand hygiene as indicated (please refer to section 7).

c. Equipment and instruments

- Equipment in the room/ area should be kept to an absolute minimum. [43-45]

- Dedicate patient-care items, such as stethoscopes, blood pressure cuffs, bedpans and thermometers to the patients in isolation. [43-45]

- Ensure that medical equipment is subjected to appropriate cleaning and disinfection/ sterilization procedures before they are being placed in the clean store or used for other patients.

- Patient charts and records should be kept away from the area to avoid contamination.

- Bedpans, commodes, urinals and washbowls should be cleaned and disinfected immediately after use.

d. Wound management

- All wounds should be covered with dressings at all times. [43-45]

e. Avoid transferring colonized/ infected patients within or between facilities as far as practical. If transfer is necessary, inform the receiving unit in advance. [43-45]

f. Terminal disinfection

- Ensure adequate cleaning and terminal disinfection of the isolation room after the patient’s discharge, paying particular attention to frequently touched surfaces such as bedrails, dialysis chairs, charts, doorknobs, taps, curtains, and bedside commodes. 1 part of household bleach (5.25% sodium hypochlorite solution) in 49 parts of water is recommended for environmental disinfection. [43-46]

- Discard all dedicated single-use items.
g. Alert system

- Post signage of contact precautions at the entrance of the isolation room, the patient’s dialysis station and kardex.
- Electronic tagging of colonized or infected patients should be done to their computer records. [43-45]

2.1.3 Provide appropriate training on infection control to medical and cleaning staff, and educate patients and their relatives on contact precautions and personal hygiene. [43-45]

2.1.4 Routine surveillance for common MDROs (e.g. methicillin-resistant Staphylococcus aureus) is encouraged.

2.1.5 Consider decolonization therapy for epidemiologically linked cases during outbreaks. [45]

2.2 Prevention and Control of Tuberculosis

Tuberculosis (TB) is a common infectious disease in Hong Kong. There are around 5000 to 7000 newly reported cases per year. [47] Pulmonary TB is highly infectious via airborne transmission, although the risk of transmission is relatively low for TB of extra-pulmonary origin. Patients infected with the human immunodeficiency virus (HIV) are at particularly high risk of TB infections, leading to a lethal form of clinical disease. In recent years, the emergence of multi-drug resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) has been a threat among patients with HIV, causing significantly higher mortality. However, MDR-TB and XDR-TB are not known to be more contagious than their susceptible counterparts. A high index of clinical suspicion, prompt isolation and early treatment of infectious cases are warranted. [48]

Airborne precautions should be applied to prevent and control pulmonary TB in the dialysis unit as follows:

2.2.1 Dialyze patients with suspected or known open TB in an Airborne Infection Isolation Room (AIIR)*.

Remarks:
*The air exhausted from the room is not re-circulated. If recirculation of air is necessary, it should pass through a High Efficiency Particulate Air (HEPA) filter. [48] Regular technical maintenance of isolation facilities is essential. [48]
2.2.2 Regular checking of air exchange with the recommended exchange rate should be conducted.

2.2.3 No particular ventilation facilities are required for TB patients who fit the following criteria:

a. In general, patients with active infectious pulmonary TB are to be placed in an appropriate TB isolation room/ward for at least 2 weeks after commencement of effective anti-TB therapy. [48]

b. At least 3 negative smears for AFB on separate occasions over at least a 14 day period if dialyzed in the same room or cubicle with HIV / other immuno-compromised patients. [48]

c. Smear conversion (as above) for patients with known/ suspected MDR-TB. [48]

2.2.4 Health care worker should wear N95 respirators when caring for patients with, or suspected of, having TB. [10]

2.2.5 A properly worn surgical mask may be an alternative if the patient is already on effective chemotherapy and shows clinical improvement. [48]

2.2.6 Wear gloves when handling potentially infectious materials, e.g. sputum. [48]

2.2.7 Infectious TB patients (especially those with uncontrolled cough) utilizing common investigation facilities outside the TB isolation ward/ room (e.g. radiology department or electro-diagnostic department) should wear surgical masks to reduce the production of airborne droplets. [10;48]

2.2.8 Health education should be provided for patients, including the need to observe personal hygiene. [5]
3. PREVENTION OF DIALYSIS-ASSOCIATED RISKS

3.1 Prevention of haemodialysis-associated infections

Vascular access is required to enable the drawing of blood from and its return to the patient during the hemodialysis process. To maximize the amount of blood cleansed during hemodialysis treatments, the vascular access should allow continuous, high volumes of blood flow. [49]

A vascular access consists of an arteriovenous fistula (AVF), an autogenous arterio-venous graft, a synthetic arterio-venous graft (AVG), or a dialysis catheter, either cuffed or uncuffed.

An AV fistula is regarded as the vascular access of choice for hemodialysis because of its superior patency and lower complication rates. [49-52] The vascular access infection rate per 100 patient-months varied markedly by type of vascular access: 0.6 for native AV fistulas, 1.6 for synthetic AV grafts, 7.6 for cuffed catheters, and 10.1 for uncuffed catheters. [53]

The incidence of catheter-related bloodstream infections varies considerably by type of vascular access, frequency of vascular access manipulation and patient-related factors. [4] It is usually caused by contamination of the insertion site or the catheter hub. [8]

3.1.1 Selection of vascular access and catheter

a. For long term vascular access, the best option is an AV fistula (AVF); while an AV graft (AVG) is preferred over central venous catheters (HD catheter). [3;4;54]

b. Uncuffed femoral HD catheters should preferably be left in place for no longer than 7 days. [8;55] The uncuffed catheter serves as a temporary access, [4;49;56;57] unless it is the only feasible option of the individual. [55]

c. Cuffed HD catheters are preferable to uncuffed HD catheters if the catheters are expected to stay in place for more than 3 weeks. [4]

d. Internal jugular vein is the preferred insertion site. [55]

3.1.2 Insertion of hemodialysis catheter

a. Apply aseptic technique. [4;6;58]

b. Perform hand hygiene before and after catheter insertion. [4;6;8;58]
c. Maximal barrier precautions should be implemented. [4;6;58]

d. Use 2% chlorhexidine in 70% isopropyl alcohol for site preparation for vascular access insertion. [4;6;8;58]

e. If there is contraindication to chlorhexidine, tincture of iodine, an iodophor (e.g. 10% povidone iodine), or 70% alcohol can be used as alternatives. [4]

3.1.3 Care of vascular access and catheter site

a. Manipulation of the dialysis catheter should only be done by trained renal medical and nursing staff.

b. Perform hand hygiene before and after vascular access site manipulation. [4;8;49]

c. Appropriate personal protective equipment used for vascular access manipulation will provide protection against infections.

d. The catheter should always be kept immobile to minimize pulling and trauma to the exit site in order to prevent infection. [6;49]

e. Use sterile gauze or sterile transparent dressings with absorbent dressing pad to cover the catheter site. If blood is oozing from the catheter insertion site, a gauze dressing might be preferred. [6]

f. At each hemodialysis treatment, examine the catheter site for signs of infection and change the catheter site dressing. [55]

g. Keep the catheter-site dressing clean and dry; and replace it if the dressing becomes damp, loosened or visibly soiled. [6]

h. Ensure the disinfectant(s) used is compatible with the catheter material in order to avoid damage to the catheter.[4] Refer to the manufacturer’s recommendations. [59]

i. Routine replacement of intravascular catheters is not necessary if they are functioning and have no evidence of causing local or systemic complications. [4;6]

j. If dialysis is temporarily declined, assess the catheter exit site and change the dressing at regular intervals by trained personnel to ensure it is functioning properly and free of infection.

k. If dialysis is no longer required, consider early removal of the dialysis catheter. [4]
3.2 Prevention of peritoneal dialysis related infections

Ambulatory peritoneal dialysis including continuous ambulatory peritoneal dialysis (CAPD) and automated peritoneal dialysis (APD) can be provided at renal centres. Fresh dialysate is introduced into the peritoneal cavity via a permanently implanted catheter.

Prevention of catheter-related infections is the primary goal of exit-site care and the following precautions should be observed:

3.2.1 A double-cuff peritoneal catheter is preferred. [60]

3.2.2 A downward-directed exit may decrease the risk of catheter-related peritonitis. [60]

3.2.3 Change of catheter dressing should be done by a nurse using aseptic technique until healing is completed. [61]

3.2.4 The exit site should be kept dry until well healed. [61]

3.2.5 Immobilize the catheter to prevent trauma to the exit site and traction on the cuffs. [61]

3.2.6 Use normal saline (0.9% saline) or antiseptic solution (e.g. aqueous chlorhexidine 0.05%) for peritoneal catheter exit site cleaning.
3.3 Patient Education

3.3.1 Personal hygiene and hand hygiene should be addressed.

3.3.2 Take care of the vascular access/ peritoneal dialysis catheter during daily activities.

 a. Patients with AV fistula (AVF) or AV graft (AVG):
 Observe for proper haemostasis of the cannulation sites and protect the site with sterile dressing pad that are securely taped after hemodialysis treatment. Dressing pad may be removed after 24 hours if no further bleeding or soiling. Patients have to pay attention to protect the vascular access site from injury or infection during daily activities, showering and bathing.

 b. Patients with tunneled cuffed catheters:
 Bathing is not allowed for the risk as in fresh water activities; showering should only be done with adequate care to protect the catheter and exit site from traction / trauma, to protect the catheter hubs, clamps and exit sites from soaking, accidental cap dislodgement, unclamping and infection.

 c. Patients with temporary uncuffed catheters:
 Bathing or showering of the catheter and the exit site is generally contra-indicated for the high risk of introducing infection to the catheter exit site and catheter dislodgement. Careful sponging with good personal hygiene practice is allowed, paying special attention to prevent untoward events, for example traction / trauma to the catheter, introduction of infection to the catheter exit site, dislodgement of the catheter, damage to the catheter hubs or unclamping of the catheter clamps.

 d. Patients with peritoneal catheters:
 In general showering of the healed exit site may be allowed with the application of gentle cleansing agent. Care must be applied to avoid accidental traction or trauma to the catheter and exit site during daily activities. Proper exit site dressing must be carried out immediately after the showering. [2;61] Application of safety pins or brooches near a peritoneal dialysis catheter should be avoided as this may lead to accidental puncture of the catheter.

3.3.3 Monitor the condition of the catheter site and report any signs and symptoms of infection.
3.4 **Staff Training**

3.4.1 Provide training to staff on catheter care.

3.4.2 Monitor for signs and symptoms of site infection.

3.4.3 Adhere to infection control practices.
4. SEROLOGY SCREENING FOR BBV IN DIALYSIS UNITS

Dialysis patients are at risk of acquiring infections caused by (BBV), including HBV, HCV and HIV. Investigations of dialysis-associated outbreaks of hepatitis indicate that transmission most likely occurs because of inadequate infection control practices. [32] Transmission of BBV is preventable, and dialysis units should have an established programme for regular surveillance of BBV infections. In case of doubtful serology results, clinical microbiologists should be consulted. [55] Also, it should be borne in mind that the BBV status of healthcare workers must be kept confidential. [55]

4.1 HBV status in patients

(Please refer to table 1)

4.1.1 HBsAg, anti-HBs and anti-HBc should be tested prior to the first dialysis session as a baseline. [32;55]

4.1.2 In patients susceptible to HBV infection (HBsAg, and anti-HBs both being negative), HbsAg is to be tested every 6 months for those on hemodialysis, and annually for those on peritoneal dialysis. Susceptible patients should also be considered for vaccination against HBV. [32;55]

4.1.3 In immune patients due to vaccination (anti-HBs positive, anti-HBc negative), anti-HBs is to be tested annually. [55]

4.1.4 In chronic HBV carriers (HBsAg positive) on hemodialysis, annual testing of HBsAg can be considered to detect the small proportion (0.3%) of patients who undergo spontaneous sero-conversion per year. [2;55]

4.1.5 Patients with acute hepatitis B should be followed up to determine whether they have developed immunity or have become chronic HBV carriers. [55]

4.2 HBV status in staff

4.2.1 The individual healthcare worker should be encouraged to assess their immune status at the time of initial employment.

4.2.2 Staff susceptible to HBV infection (HBsAg and anti-HBs both negative) are recommended to receive HBV vaccination. [55;62]

4.2.3 All HBsAg-positive healthcare workers have the responsibility to take precautions in order to avoid transmitting the infection to others. [63]
4.3 HCV status in patients

(Please refer to table 1)

4.3.1 Anti-HCV and alanine aminotransferase levels (ALT) should be tested prior to the first dialysis session as a baseline, and at least every 6 months for anti-HCV negative haemodialysis patients. [32;55;62;123]

4.3.2 Patients who are anti-HCV negative and immunosuppressed, or have undergone a renal transplant, or are being transferred from a unit where there has been a recent HCV transmission should be tested for HCV ribonucleic acid (RNA). [1]

4.4 HIV status in patients

(Please refer to table 1)

4.4.1 Anti-HIV should be tested prior to the first dialysis session as a baseline. [55]

4.4.2 The routine testing of HIV infection status is not necessary unless clinically indicated. [55]

4.5 Handling of newly identified BBV infections in dialysis units

4.5.1 In the event of a newly identified BBV infection in a dialysis unit, testing for the respective viral infection is recommended in other patients who have a history of sharing the dialysis sessions and/ or machines with the index patient(s). [55]

4.5.2 Susceptible patient(s) at risk of contracting HBV from a newly infected individual should be given a booster dose of vaccine and be monitored for any sero-conversion to become HBsAg positive over a period of 3 months, at intervals not longer than monthly. [1;55] Hepatitis B immunoglobulin (HBIG) should be considered for those patients who do not respond to the HBV vaccine. [1;55]

4.5.3 Patients at risk of contracting HCV from a newly infected individual should be monitored for any sero-conversion to become anti-HCV-positive over a period of 6 months, [32] at intervals of no longer than 3 months. Testing for HCV RNA may be considered. [55]
Table 1: Recommended schedule of BBV serological screening for dialysis patients

<table>
<thead>
<tr>
<th></th>
<th>Prior to 1st dialysis session</th>
<th>Semi-annual</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBsAg*, anti-HBs,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HBc# anti-HCV,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT, anti-HIV (HD & PD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBsAg -ve, anti-HBs -ve and anti-HBc -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBsAg (HD)</td>
<td>HBsAg (PD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HBs +ve (≥ 10mIU/mL), anti-HBc -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HBs (HD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HBs and anti-HBc +ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No additional HBV testing needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBsAg +ve or isolated anti-HBc +ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBsAg (HD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HCV -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HCV, ALT (HD)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

* : Result of HBsAg should be known before the patient begins dialysis

: Test anti-HBc for occult HBV infection, for hemodialysis patients only

HD: Hemodialysis patients

PD: Peritoneal dialysis patients
5. IMMUNIZATION

5.1 Hepatitis B vaccination

Hepatitis B vaccination is recommended for all susceptible chronic hemodialysis patients and for all staff members. [32;55]

Primary vaccination comprises three intramuscular doses of vaccine, with the second and third doses given at 1 and 6 months respectively after the first dose. Vaccines containing recombinant HBsAg are available to provide protection against HBV infection.

5.1.1 Patients

Patients with renal failure are potentially at increased risk of HBV infection because of their need for long-term hemodialysis. Prevention of HBV in renal patients is recommended. [32]

a. Patients with progressive renal failure should be considered for hepatitis B vaccination for better antibody response if chronic dialysis is anticipated.

b. For patients undergoing hemodialysis or immunosuppressed patients, higher vaccine dosages or increased number of doses are required. [1;64] Alternatively, the vaccine may be administered intradermally instead of the conventional intramuscular route. [55]

c. Antibody responses to the HBV vaccine vary widely between individuals. Antibody responses should be checked 1-4 months after a course of vaccine. [55]

d. A booster dose is indicated when the anti-HBs level declines to <10 mIU/ml upon annual anti-HBs testing. [1;55;65]

e. Persons who do not respond to the primary vaccine series (anti-HBs level <10 mIU/ml and HBsAg -ve) should be revaccinated with 3 additional doses and retested for antibody response. [2;32;64] No additional doses of vaccine are warranted for those who do not respond to the second series.
5.1.2 Staff

a. All staff who work in the dialysis unit should be encouraged having their immune status for HBV checked at the initial employment. [2]

b. Both employer and employee are recommended to keep a serological testing and vaccination record.

c. Staff susceptible to HBV infection (HBsAg and anti-HBs both negative) are recommended to undergo vaccination. [55]

5.2 Influenza vaccination

Influenza is a common viral illness and is associated with significant mortality and morbidity. [66,67] In Hong Kong, influenza is more prevalent from January to March and from July to August. Influenza affects the general population; while infection in certain high risk groups, including patients with chronic renal failure, is associated with higher morbidity and mortality rates. [68,69]

Influenza vaccination is one of the most effective means to prevent influenza and its complications. The inactivated (killed) influenza vaccine has been used in Hong Kong for many years. Due to the frequent changes in the virus’s genetic makeup, the influenza vaccine requires annual administration and its protective efficacy varies depending partly on whether the vaccine strain matches with the circulating strain. [68]

People should receive influenza vaccination annually at least 2 weeks prior to the anticipated seasonal peak of influenza. [68] The government influenza vaccination programme aims at protecting persons at high risk for complications and healthcare workers from infection. [68]

5.2.1 Patients

World Health Organization (WHO) recommends that priority for influenza vaccination be given to those at highest risk of developing serious complications from influenza. [70-72]

In Hong Kong, influenza vaccination is recommended for persons with chronic illness, such as renal diseases, to prevent influenza-associated complications and mortality. [68]
5.2.2 Staff

The World Health Organization and international health authorities recommend that healthcare workers should receive annual influenza vaccination to reduce the risk of influenza transmission. [73-77]

5.3 Pneumococcal vaccination

Invasive pneumococcal diseases (IPD) caused by Streptococcus pneumonae include septicemia, meningitis and empyema. Nephrotic syndrome is the renal disease that is most clearly associated with an increased risk of pneumococcal infection. [78]

The Centers for Disease Control and Prevention (CDC) recommends vaccinating the persons who are at increased risk of pneumococcal disease or its complications, including patients with chronic renal failure. [5;78;79]

5.3.1 In Hong Kong, pneumococcal vaccination is recommended for those at risk of severe IPD, including persons with chronic renal diseases. [18]

5.3.2 Revaccination may be considered five years after the first dose of pneumococcal vaccine for individuals with the at-risk conditions. [18]
6. WATER TREATMENT SYSTEM

Components of the dialysis system that are potentially contaminated by microbes include the water treatment system and the water and dialysate distribution systems. [80] Following recommended standards for the preparation of dialysate and the operation of water treatment equipment is essential for patient safety, quality control and prevention of infections.

6.1 Water treatment and distribution system

The water treatment system includes the collection of water purification devices and its associated piping, pumps, valves and gauges. It produces purified water for hemodialysis and delivers it to the point of use, including individual hemodialysis machines.

6.1.1 Piping and plumbing system

a. All dialysis system piping should be readily accessible for inspection and maintenance. [81]

b. Consideration should be given to the disposal of dialysis effluent from the dialyzing process to prevent odor and backflow. [81]

c. The supply of potable water for handwashing stations should be separated from the water supply for hemodialysis, of which the supply and drainage would not be interfered should the supply of potable water be disrupted. [81]

6.1.2 Whenever practical, design and engineer water systems in dialysis settings to avoid incorporating joints, dead-end pipes, and unused branches and taps that can harbor bacteria. [80] The use of suitable inert material such as stainless steel, cross-linked polyethylene or polypropylene is crucial to ensure water quality. Copper, brass, aluminum, lead, zinc or other similar materials are not suitable and should be avoided.

6.1.3 Storage tanks are not recommended for use in dialysis systems unless they are routinely drained, disinfected with an EPA-registered product, and fitted with an ultra filter or pyogenic filter (membrane filter with a pore size sufficient to remove small particles and molecules >1 kilodalton) installed in the water line distal to the storage tank. [80] The filter should be changed on a regular basis according to the manufacturer’s instruction. [82]
6.1.4 Disinfect water distribution systems in dialysis units with either hot water or chemical germicide, according to the manufacturer’s recommendations, at least monthly, to prevent bacterial contamination. [80]

6.1.5 Disinfect the reverse osmosis (RO) systems in accordance with the manufacturer’s recommended procedures and intervals.

6.1.6 Regular monitoring of backwashing/ regeneration of the pre-conditioning system of the water treatment plant.

6.1.7 Hemodialysis procedure MUST NOT be performed during disinfection of the water treatment system and the loop. [55]

6.1.8 Written procedures on disinfection and confirmed absence of residual disinfectants have to be in place if chemical disinfection is performed.

6.1.9 Install a central station monitor or alarm system for the water treatment plant and set a warning for low levels. [55]

6.1.10 Any amendments to the procedure guidelines have to be agreed upon by the head of the dialysis centre as well as the equipment manufacturer when appropriate. [55]

6.1.11 Staff should strictly adhere to procedure guidelines. Deviations from the guidelines without sound reasons and prior approval from the head of the dialysis centre should not be allowed. [55]

6.1.12 A contingency plan should be in place for unexpected disruptions to the water supply, so as to avoid service breakdown during maintenance of the water system. Good communication channels with the Water Supplies Department should also be established.
6.2 Hemodialysis/ Hemodiafiltration machines

Hemodialysis is a form of renal replacement therapy in which waste products are removed primarily by diffusion from blood flowing on one side of a membrane into dialysate flowing on the other side. [82]

Hemodiafiltration is also a form of renal replacement therapy in which waste solutes are removed from the blood by a combination of diffusion and convection through a high-flux membrane. [82]

6.2.1 For most dialysis machines, routine disinfection with hot water or with a chemical germicide connected to a disinfection port on the machine does not disinfect the line between the outlet from the water distribution system and the back of the dialysis machine. Users should establish a procedure for regular disinfection of this line. [82]

6.2.2 Follow the manufacturer’s guidelines on disinfection procedures. [55] It is desirable to disinfect the dialysis machines together with the distribution loop by central heat disinfection.

6.2.3 Ensure that the hemodialysis machine is disinfected after use, after repair work or when the recommended interval from the last disinfection is exceeded.

6.2.4 Ensure each dialysis machine is rinsed and tested for the absence of residual germicide if chemical disinfection is used. [82]

6.2.5 Ensure that relevant procedural guidelines on the preparation of the hemodialysis machine for hemodialysis are in place. [55]

6.2.6 Routine disinfection of active and backup dialysis machines is performed according to defined protocol. Documentation of the absence of residual disinfectants is required for machines requiring chemical disinfectants. [55]
6.3 Quality of water for dialysis

Contaminants commonly found in tap water are toxic to hemodialysis patients. To prevent harm from these contaminants, standards for the quality of water used to prepare dialysate have been developed. There are variations in the recommended maximum allowable levels of microbiological contaminants in water used for hemodialysis, as well as the methods used to measure them in different countries. Harmonization of existing standards may improve patient safety by promoting best practices.

6.3.1 Microbiological contaminants

Regular microbiologic sampling of dialysis fluids is recommended because gram-negative bacteria can proliferate rapidly in the water and dialysate in hemodialysis systems. [83] High levels of these organisms place patients at risk of pyrogenic reactions or healthcare-associated infections. [80]

a. Perform bacteriologic assays of water and dialysis fluids at least once a month [80;82] and during outbreaks using standard quantitative methods. [80]

- Assay for heterotrophic, mesophilic bacteria (e.g. *Pseudomonas* species). [80]

- Use non-nutrient culture media (tryptone glucose extract agar (TGEA) or Reasoner 2A) to detect bacteria in hemodialysis water. [7;84] They should be cultured at 17°C to 23°C for 168 hours (7 days). [7;84] For central sodium bicarbonate preparation and distribution systems, the cultivation medium should be supplemented with 4% sodium bicarbonate. [84]

- Do not use nutrient-rich media (e.g. blood agar or chocolate agar). [80;84] A nutrient-rich environment is not appropriate for culturing organisms that have adapted to a purified water environment. [83]

b. Water used to prepare dialysate or concentrates from powder at a dialysis facility shall contain a total viable microbial count lower than 100 CFU/mL. [83]

c. For centres practicing on-line hemodiafiltration, the microbial count should be less than 1 CFU/ml for samples taken at pre-filter (ultra-filter) sites and 10^{-1} CFU/ml at the infusion port. Special culture method should be used to increase sensitivity. [55]
6.3.2 Endotoxin contaminants

Endotoxin is a complex lipopolysaccharide-containing material derived from the outer cell wall of gram-negative bacteria. In the human blood-stream, endotoxin can cause fever (pyrogenic reaction), coagulation and circulatory disturbances, and severe consequences such as bacteremic or endotoxic shock. [85] Gram-negative bacteria (e.g. *Pseudomonas* species) have been shown to multiply rapidly in a variety of hospital-associated fluids that can be used as supply water for hemodialysis (e.g. distilled water, deionized water, RO water and softened water) and in dialysate. [80]

CDC has advocated monthly endotoxin testing along with microbiologic assays of water, because endotoxin activity may not correspond to the total heterotrophic plate counts. [81]

a. A level of 0.25 EU/mL was chosen as the upper limit for endotoxin testing on RO water used for routine hemodialysis/hemodiafiltration. It is up to the discretion of the individual dialysis centre to decide whether to perform the testing on a regular basis. [55]

b. For centres practicing on-line hemodiafiltration, the maximum allowable level for endotoxin should be lower, at 0.03 EU/mL. [55;83]

* Note that the above levels were recommendations, rather than requirements. [55;83]

6.3.3 Sample collection

a. Follow proper procedures to collect samples to prevent potential contamination which may lead to false positive result:

- rinse sampling ports for at least 1 minute at normal pressure and flow rate before using a “clean catch” technique to collect samples [86] or

- aspirate samples with needles from the sampling ports of dialysis machines aseptically following manufacturer’s instructions. [84] Sample ports should be disinfected with alcohol pads and allowed to air dry before the sample is drawn. [84]

b. Sample testing should be performed monthly on the water treatment system; and at least annually on dialysis machines. [86]

6.3.4 For monitoring of the water distribution system, samples should be taken from the first and last outlets of the water distribution loop, the outlets supplying reuse equipment and bicarbonate concentrate mixing tanks. [82]
6.3.5 If the results of these tests are unsatisfactory, additional testing (e.g. on the ultra-filter inlet and outlet, RO product water, and storage tank outlet) should be undertaken so as to identify the source of contamination. [82]

6.3.6 For a newly installed water distribution piping system, or when a change has been made to an existing system, it is recommended that weekly testing be conducted continuously for 1 month to verify that bacteria or endotoxin levels are consistently within the allowed limits. [82] The test(s) should be performed according to the manufacturer’s recommendation.

6.3.7 After installing a water treatment, storage and distribution system, the user is responsible for continued monitoring of bacterial levels of the system to comply with the requirements of this standard. [82]

6.3.8 All bacteria and endotoxin results should be recorded on a log sheet to identify trends and the need for corrective action. [82] Any such actions should also be recorded if indicated. [55]

6.4 Reprocessing of dialyzers

Dialysis machines have separate circuits for the patient’s blood and the dialysate fluid, which are brought together and separated by a semi-permeable membrane within the dialyzer. Outbreaks of infections associated with the reuse of hemodialyzers have been reported. [80] Hence, dialyzers are recommended for single use, i.e. a single dialysis session for one patient. [1] Since 2012, Hong Kong hospitals have stopped the reuse of dialyzers.
7. INFECTION CONTROL PRACTICES IN RENAL UNITS

Infection control precautions should be tailored to prevent transmission of viruses and pathogenic bacteria within specific patients and settings. In addition to Standard Precautions, more stringent precautions are recommended for renal units because of the increased risk of contamination with blood and pathogenic microorganisms.

7.1 Facility setting

7.1.1 Allow adequate room for daily operations, lighting and staff so as to ensure safe working practices. [1;55]

7.1.2 Staff members should have designated areas to rest, eat and drink. [1;55]

7.1.3 Assign designated areas for removal of personal protective equipment and decontamination of hands upon leaving the clinical area of the unit.

7.1.4 Assign designated clean areas for the preparation, handling and storage of medications, supplies and equipment. [32]

7.1.5 Clean areas should be clearly separated from contaminated areas where used equipment and supplies are handled. [32]

7.1.6 Hand hygiene facilities should be easily accessible.

7.1.7 Separate rooms are recommended for peritoneal dialysis training and care of complications related to CAPD. [15]

7.1.8 Assign designated rooms/ cubicles/ areas for potentially infectious patients, or cohort patients with the same pathogen in the renal unit.
Hand hygiene has been frequently cited as the single most important practice to reduce the transmission of infectious agents in healthcare settings [87] and is an essential element of Standard Precautions.

The term “hand hygiene” includes both hand washing with soap and water, and use of alcohol-based hand rub.

7.2.1 Five crucial moments of hand hygiene are promoted by WHO: [9]

- a. Before touching a patient
- b. Before clean/ aseptic procedures
- c. After body fluid exposure risk
- d. After touching a patient
- e. After touching patient surroundings

7.2.2 All patients and visitors should perform hand hygiene on entering and leaving the dialysis unit.

7.2.3 Wash hands with soap and water when hands are visibly soiled with dirt or organic material, such as after touching blood, body fluids (e.g. PD fluid/ dialysate fluid), secretions, excretions and contaminated items. [9]

7.2.4 When hands are not visibly soiled, alcohol-based hand rub can be used. [9;32]

7.2.5 Perform hand hygiene after touching a surgical mask/ N95 respirator or before touching the face (especially the eyes, nose and mouth). [9]

7.2.6 Provision of resources

- a. Sufficient number of sinks with soap and water should be consistently available to facilitate hand washing. [9;32]
- b. Alcohol-based hand rub should be made available and easily accessed by staff in renal units, such as at every patient’s bed side and at every nursing station within the unit. [9]
- c. Provide waste containers for the disposal of used paper towels. [9]
7.2.7 Hand hygiene technique
 a. “Bare below the elbow” policy is recommended in clinical practices. [88]
 b. Clean hands properly according to the procedures listed in Appendix A.

7.3 Personal protective equipment (PPE)

PPE refers to a variety of barriers and respirators that are used alone or in combination to protect mucous membranes, airways, skin, and clothing from contact with infectious agents. During the procedure of hemodialysis, initiation or termination of dialysis, exposure to blood, body fluids and potentially infectious items is anticipated. Therefore proper usage of PPE is extremely important in renal units.

The selection of PPE is based on the nature of patient contact and/ or the likely mode(s) of transmission. [87]

7.3.1 Gloves, protective gowns, aprons, surgical masks, goggles/ face shields should be readily available. [2]

7.3.2 Staff should put on appropriate PPE when handling dialysate / PD effluent. [55]

7.3.3 Both staff and patients should wear masks when their dialysis catheter lumens are exposed. [5;89]

7.3.4 PPE should be changed at the earliest opportunity if they become visibly splashed with blood [1] or body fluids.

7.3.5 Staff should perform hand hygiene, change gloves and aprons if used between patients/ stations, or different procedures for the same patient (e.g. moving from a contaminated to a clean body site). [1;2]

7.3.6 Don and remove PPE in designated areas to avoid contamination.

7.3.7 Remove PPE and perform hand hygiene with the proper techniques (please refer to appendix A) after procedures or on leaving the work area. [2]

7.3.8 Used PPE should be disposed into lidded waste containers.
7.4 Equipment and instrument

The risk of transmission is increased if equipment and inanimate surfaces have not been adequately cleaned between dialysis sessions. Staff should pay attention to the possibility of blood contaminating equipment and dialysis machines, and the need to ensure that all used equipment and machines are adequately decontaminated before reuse.

7.4.1 Items or clinical equipment used in a patient’s dialysis station should be disposed of; or dedicated for use on the single patient; or disinfected before they are returned to the common clean area or used on another patient. [12;32;71]

7.4.2 The entire dialysis fluid circuits of the dialysis machines should be decontaminated between patients by heat or chemical disinfection according to the manufacturer’s instructions. [1] Dialysis machines should be cleaned and disinfected internally and externally, also according to the manufacturer’s instructions. [1;12]

7.4.3 Medical items labeled for “single use” should not be reused. [2]

7.4.4 Reused medical instruments (e.g. scissors, hemostats, clamps, stethoscopes, blood pressure cuffs) should be thoroughly cleaned before disinfection.

7.4.5 Appropriate PPE should be worn during decontamination procedures. For recommendations of appropriate PPE, please refer to section 7.3 of this document.
7.5 Medications

7.5.1 Perform hand hygiene before and after handling of medications.

7.5.2 Prepare the medication in the designated clean area.

7.5.3 Medication from a syringe must not be administered to other patients even if the needle on the syringe is changed.

7.5.4 All single-use injectable medications and solutions should be dedicated for use on a single patient and be given once only.

7.5.5 Medications packaged as multi-dose preparations should be prepared in the designated clean area and delivered separately to each patient.

7.5.6 Medications taken to the patient area or dialysis station should be used only for that patient and should not be returned to a common clean area or used on other patients.

7.5.7 All infusion fluids, administration sets (intravenous tubings and connections) and pressure transducer setups are single-use devices. Contamination cannot be ruled out by visual inspection.

7.5.8 Common carts should not be used within the patient area to prepare or distribute medications.
7.6 Environmental control

Inanimate environments are well documented to be a reservoir for microorganisms. Direct or indirect contact with the patient’s immediate environment poses a major risk of cross-contamination and spread of nosocomial infections. Cleansing of environmental surfaces is fundamental to reduce their potential contribution to infections. [71]

7.6.1 Environmental cleansing and disinfection

a. Supporting staff should understand the precautions for minimizing exposure risk to potentially infectious materials. [90]

b. Routine cleaning is important to ensure a clean and dust-free hospital environment. Clean and disinfect the dialysis stations (e.g., chairs, beds, tables, machines and control panels) between patients or sessions with 1 part of household bleach (5.25% sodium hypochlorite solution) in 99 parts of water, or equivalent environmental disinfectants. [90]

c. Place all used dialyzers and tubings in leak-proof containers during transport from stations to the disposal area. [1]

7.6.2 Handling of blood spillages

a. Staff should be trained to deal with blood spillages properly. [32]

b. Appropriate PPE should be worn when handling spills, such as eye protections, disposable gloves and gowns.

c. Method 1: Clean the visible matter with disposable absorbent material. Mop the area with a cloth or paper towels wetted with 1 part of household bleach (5.25% sodium hypochlorite solution) in 4 parts of water, then leave for 10 minutes before rinsing with water. [90]

d. Method 2: Apply chlorine-releasing granules or powder directly to absorb all spills, remove them with paper towels, and then mop the area until clean. [90]

e. Remove PPE and perform hand hygiene after the procedure.
7.6.3 Handling of body fluids spillages

a. Staff should be trained to deal with body fluids spillages properly.

b. Appropriate PPE should be worn when handling body fluids, such as eye protections, disposable gloves and gowns.

c. For body fluids such as dialysate, peritoneal dialysis fluid or vomitus, cleanse the visible matter with disposable absorbent material. Mop the area with a cloth or paper towels with 1 part of household bleach (5.25% sodium hypochlorite solution) in 49 parts of water, then leave for 15-30 minutes before rinsing with water. [90]

d. Remove PPE and perform hand hygiene after the procedure.
7.7 Waste management

7.7.1 Waste disposal

a. Supporting staff in dialysis units should promptly remove soiled items and wastes, maintaining an environment that enhances patient care. [32]

b. Surgical dressings, swabs and all other waste dribbling with blood, caked with blood or containing free-flowing blood should be treated as clinical waste and discarded into red waste bags. [91]

c. Bags used for clinical waste should be leak-proof, [32;91] impervious to moisture, and strong enough to prevent tearing or bursting. [91]

d. Adequate waste containers should be available at the point of use.

7.7.2 Sharps disposal

a. All staff should handle sharps with care and great caution to avoid injury.

b. Each staff member performing procedures in which sharp instruments are used is responsible for ensuring immediate safe disposal. [1]

c. Sharps boxes should be available at the point of use. [2]

d. Used sharps, such as dialysis needles, should not be re-sheathed or recapped. They should be discarded immediately in a safe manner into a sharps box. [1]

e. Sharps boxes should be puncture-resistant. They should not be over-filled above the warning line indicating between 70% and 80% of its maximum volume and should be well covered and properly sealed prior to disposal to prevent leakage. [1;91]

f. Sharps box is classified as clinical waste. It has to be properly labeled before disposal. [91] Please refer to the Environmental Protection Department (EPD) for relevant legislative requirements.
7.7.3 Disposal of peritoneal dialysis (PD) effluent/dialysate

a. All staff should follow the unit’s guidelines for proper handling of PD effluent/dialysate with great caution to avoid splashing. [92]

b. PD fluid should be disposed directly into a drain or by pouring carefully into a sluice. [1]

c. Discard the emptied CAPD bag with tubing into a black waste bag. [92]

7.7.4 Disposal of hemodialysis fluid

Used hemodialysis fluid should be disposed directly into a drain.
8. HOME DIALYSIS

Home hemodialysis has its origins in the 1960’s. The number of patients on peritoneal dialysis has increased since the development of continuous ambulatory peritoneal dialysis (CAPD) in the late 1970’s and the introduction of continuous cycling peritoneal dialysis (CCPD) in the 1990’s.

Home dialysis offers patients self control, self esteem, best survival and less exposure to hospital-acquired infections. [46;55;93] Cross infections should be rare. [14;94;95] Scheduling is flexible and travel to a health centre is eliminated.

There are no major differences between infection control practices in the home dialysis setting and healthcare facilities. Some recommendations are highlighted below for successful home dialysis.

8.1 Home hemodialysis

More patients can undergo hemodialysis by themselves at home if training and support services are available together with the advancement of more patient-friendly machines. The advantages of home hemodialysis, such as better clinical response and quality of life, with extended hours of hemodialysis done at the patient’s convenience, far outweigh its financial considerations. [93;96-98]

8.1.1 Patients must have a vascular access that is easy to use. [93] A satisfactory arteriovenous fistula for repeated punctures by the patient himself or a household member is preferred. [55]

8.1.2 The patient/ household member should be trained by experienced staff in the proper setting up of dialysis equipment, care of the dialysis access, asepsis during initiation of and after hemodialysis procedures, care and maintenance of equipment and supplies (including cleaning and disinfection), recognition of signs of infection, and infection control procedures (including hand hygiene and waste disposal). [14;32;94;99]

8.1.3 The patient/ household member should be educated to designate a clean area for the preparation, handling and storage of medications, dialysate and equipment. [14;32;94;95] This designated hemodialysis area should be free from plants and pets.

8.1.4 The home should be surveyed before starting training to ensure there is an appropriate area to install the equipment, with adequate electricity, water supply and drainage, and the availability of a telephone nearby the machines. Any necessary home modifications should be done. [93]
8.1.5 Skilled and experienced staff should be available for patient consultation at all times. [46;93]

8.1.6 The patient should complete dialysis log sheets. The patient/ household member should be trained to handle emergencies. [93]

8.1.7 Staff should visit the patient during a home dialysis session at least once a year. A nephrologist should see the patient once a month or otherwise required. [93]

8.1.8 Regular disinfection, maintenance and water bacteriological testing of hemodialysis and RO machines should be performed.

8.1.9 The family members of HBsAg positive patients are advised to test their HBsAg and anti-HBs status. If both HBsAg and anti-HBs are negative, they are advised to receive Hepatitis B vaccination.

8.2 Home peritoneal dialysis

Many patients can continue to use peritoneal dialysis successfully for many years before it fails, usually due to repeated infection and loss of the peritoneal membrane’s surface area or function (peritoneal failure). Special care must therefore be taken by the patient to prevent infections. [100]

8.2.1 The patient should perform peritoneal dialysis in an area which is free from pets. [101-106]

8.2.2 The patient/ household member should be trained by experienced staff for proper dialysis procedures.

8.2.3 The patient should be educated on general and healed PD exit site care; the site should be examined and cleaned at least daily or whenever soiled. [100]

 a. Wash hands or use an alcohol-based hand rub; wear clean gloves if indicated, such as when handling soiled dressings.

 b. Remove the dressing, if present and perform hand hygiene.

 c. Check the exit site for redness, swelling, drainage or soreness.

 d. Check the catheter for cracks or tears.

 e. Gently touch the catheter tunnel, noting the presence of swelling, discharge or pain.
f. When showering, clean the skin around the catheter with antibacterial liquid soap and rinse.

g. Secure the catheter to the abdomen by using immobilizer or tape to avoid tension on the catheter and trauma on the exit site.

8.2.4 The patient should avoid all fresh water activities (e.g. in lakes, rivers and streams), swimming, hot tubs, jacuzzis, soaking tubs and public pools to prevent gram-negative catheter-related infections and peritonitis.

8.3 Management of waste and environmental cleaning at home

8.3.1 Reuse of single-use device is not recommended.

8.3.2 Waste generated from home dialysis patients can be regarded as household waste (municipal waste).

8.3.3 The extracorporeal blood circuit should be capped to form a closed system for disposal in a garbage bag after the blood cells in it had been returned to the patient.

8.3.4 The emptied PD bag with tubing should be discarded into a garbage bag after it had been properly clamped.

8.3.5 The sharps box (container) should be puncture-resistant and should not be over-filled above 70% to 80% of its maximum volume. The filled box should be well covered and properly sealed for disposal. [1]

8.3.6 Non-critical items (e.g. blood pressure cuffs, dialysis chairs) can be cleaned with detergent. Clean all machines and surfaces with detergent prior to and after use. Blood spills should be handled as previously described as in section 7. Sterilization of critical items is not practical at home. [100]
9. OCCUPATIONAL SAFETY AND HEALTH

Healthcare personnel are at risk of occupational hazards such as blood and body fluid exposure, sharps injuries or exposure to harmful chemicals in the hospital’s work environment.

Training in health and safety should ensure that workers recognize and understand the potential risks of healthcare-associated infections. A comprehensive policy for the management of blood exposure incidents and their reporting to the occupational health authorities should be established. These incidents should be monitored, and relevant procedures or equipment should be modified if necessary.

9.1 Blood and body fluid exposure

Exposure to blood-borne pathogens, e.g. HBV, HCV and HIV, may occur through needle-stick injuries by sharp instruments that are contaminated with an infected patient's blood, or through mucosal contact with a patient's blood. [107]

9.1.1 Nature of injury

a. Sharps injury

Care should be taken to avoid injury when dealing with any sharp instruments such as dialysis needles, particularly when they are contaminated with blood or body fluids. Sharps injuries are often associated with these activities: [108]

- Recapping needles
- Transferring body fluids between containers using sharp devices (such as a syringe and needle)
- Failing to dispose used needles properly in a puncture-resistant sharps box.

b. Blood or body fluids spills

Accidental exposure to spills of blood or body fluids may expose the healthcare worker to BBV or other pathogens.
9.1.2 Prevention of occupational infections

In the hemodialysis setting, exposure to blood and potentially contaminated fluids can be anticipated. Standard precautions are recommended when caring for all patients.

a. General precautions for prevention of sharps injury and blood or body fluid exposure:
 • Vaccination should be given to prevent infections such as HBV. [80]
 • Staff should cover any cuts and abrasions with waterproof dressings.
 • Using appropriate PPE such as gloves, eye and face protections, gowns or aprons to prevent potential exposures to the eyes, nose, mouth, or skin when contact with blood or body fluids is expected, especially when splash or spray may happen. [55;80]
 • Perform hand hygiene after contact with blood or body fluids.

b. In addition, sharps injuries can be prevented by: [80]
 • Using safer techniques.
 • Disposing of used needles and sharp devices in a sharps box immediately.
 • Using medical devices with safety features designed to prevent injuries.

9.1.3 Management of occupational blood exposures [109]

a. Immediate care after exposure
 • Wash wounds and skin with soap and water.
 • Flush mucous membranes with water.
 • Report the incident to your supervisor.
• Immediately seek medical treatment [109]

 i Determine the risk associated with the exposure by type of fluid and nature of exposure.

 ii Evaluate the source of exposure.

 iii Evaluate the exposed person.

b. Provide relevant follow-up testing and counseling based on the above assessments. [109]

9.2 Chemical disinfectants

Chemicals may exert either acute or chronic effects on workers. The consequences depend on extent of exposure, the route of exposure, and the physical and chemical properties of the substances.

9.2.1 Staff should be trained on how to handle the chemical disinfectants. Supporting staff should be supervised when they are handling chemicals.

9.2.2 Personnel should take appropriate precautions when handling chemical disinfectants. (Please refer to table 2)

9.2.3 Users should observe the product information and other relevant details, including chemical labeling, Material Safety Data Sheet (MSDS) and emergency preparedness. Proper measures for controlling chemical exposures and spillage should be applied accordingly. [14]

9.2.4 PPE should be used when the risk could not be lowered by appropriate risk control measures.

9.2.5 Risk assessment should be conducted with respect to particular tasks.
Table 2: Common chemicals used in renal units

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Hazards</th>
<th>General Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol (70%)</td>
<td>• Flammable</td>
<td>• Handle in a well-ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Keep away from heat sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Store in non-flammable cabinets</td>
</tr>
<tr>
<td>2% Chlorhexidine in Alcohol</td>
<td>• Flammable as it contains alcohol</td>
<td>• Never use on mucous membranes as it contains alcohol</td>
</tr>
<tr>
<td></td>
<td>• Contains higher concentration of Chlorhexidine, may cause skin irritation or tingling sensation</td>
<td>• Keep away from heat sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Store in non-flammable cabinets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Contra-indicated for those with allergy history of Chlorhexidine</td>
</tr>
<tr>
<td>0.05% Aqueous Chlorhexidine Gluconate</td>
<td>• No reported occupational hazard</td>
<td>• None</td>
</tr>
<tr>
<td>Peracetic acid (0.2%)</td>
<td>• Concentrated solution is flammable and causes serious eye and skin damage</td>
<td>• Handle in a well ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use appropriate PPE when handling</td>
</tr>
<tr>
<td>Sodium hypochlorite (5.25% as in the household bleach)</td>
<td>• Irritates eyes; skin or mucous membranes</td>
<td>• Handle in a well ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use appropriate PPE while handling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not to be mixed with acids to avoid release of chlorine gas</td>
</tr>
<tr>
<td>Citric acid (20-25%)</td>
<td>• Causes serious damage to eyes and skin irritation</td>
<td>• Protective goggles and gloves should be used</td>
</tr>
<tr>
<td>Povidone iodine</td>
<td>• May form a yellow or brown stain on skin</td>
<td>• Protective gloves should be used</td>
</tr>
</tbody>
</table>

Remarks:

The table aims at providing general safety information of the substances commonly found in disinfectants. Commercial products usually contain a mixture of different chemicals and thus may have varying chemical properties. The user should observe the Materials Safety Data Sheet (MSDS) of each particular disinfectant for relevant safety information.

In view of the occupational hazard of using formaldehyde, it is desirable for new dialysis centres to use non-formaldehyde based disinfectants to clean the RO system. [110]
10. SURVEILLANCE

Patients on chronic hemodialysis are at high risk of infections. They have impaired immune systems and require frequent routine puncture of a vascular access site for hemodialysis. For patients on peritoneal dialysis, the leading complication is peritonitis. Severe and prolonged peritonitis may lead to peritoneal membrane failure. Morbidity, mortality and financial burden on the healthcare system are some of the adverse consequences of infections.

Infection is the second most common cause of death in hemodialysis patients in the United States [111] and the leading cause of death in patients receiving renal replacement therapy in Hong Kong. [38] Outbreaks of bacteremia and blood-borne infections have also been reported in hemodialysis centres. [20;32;112]

Resistant organisms may emerge as a result of frequent treatment with antimicrobials. [50] Monitoring antimicrobial use and antimicrobial-resistant organisms related infections in dialysis patients is critical to prevent antimicrobial resistance. [53;113]

Surveillance of dialysis-associated infections helps to identify risk factors of infections and formulate measures to prevent infection and improve patient safety [32;114] as well as the quality of healthcare. [115]

10.1 Develop specific surveillance programs for dialysis centres. The surveillance program should be incorporated into routine clinical activities and should be regularly conducted to identify blood-borne infections, primary blood stream infections, catheter-associated blood stream infections, peritoneal dialysis related peritonitis, exit site infections, tunnel infections, antibiotic-resistant organisms and antibiotic use. [22;60;115-118]

10.2 Conduct surveillance in all dialysis centres, including satellite centres and ambulatory care centres. [111]

10.3 Use standardized methods and definitions for data collection and analysis. [4;50;118]

10.4 Delegate the surveillance program to trained personnel to ensure that data collection and data management are standardized, timely and accurate. [116]

10.5 Use statistical tool to monitor the trends of infections and identify risk factors of dialysis-related infections. Review causative organisms and presumed etiology regularly to facilitate intervention if infection is increasing. [60]

10.6 Investigate the cause of exit site infections so that improvements in site care practices can be made accordingly. [4]
10.7 Investigate outbreaks or abnormal clustering of dialysis-related infections and make recommendations to frontline staff as necessary. [111;119]

10.8 Benchmark the surveillance data with local and international rates, like the Dialysis Surveillance Network (DSN).

10.9 Periodically report the rates and trends of infections to relevant parties.

11. QUALITY MEASURES

11.1 Periodically evaluate and validate the data and process of the surveillance to ensure high quality and accuracy. [116]

11.2 Establish indicators to measure the performance of dialysis centres, [116;120] such as rates of primary blood stream infections, exit site infections and peritoneal dialysis-related peritonitis.

11.3 Involve multidisciplinary personnel in each dialysis centre to identify areas for improvement and ensure that relevant recommendations, policies and infection control practices have been implemented.

11.4 Regularly review and update evidence-based practices in dialysis.

11.5 Provide infection control training to all new and existing healthcare workers on a regular basis. [32]

11.6 Develop a well structured peritoneal dialysis patient training program. The trainer should administer the program, demonstrate procedures and skills of dialysis, care of the catheter and exit site. Refresher training is recommended after peritonitis, catheter infection or interruption in dialysis. [60;121] This strategy may also be appropriate for hemodialysis patients on home therapy.
12. FREQUENTLY ASKED QUESTIONS (FAQS)

Q1. For patients with the following serology result: anti-HBc positive, HBsAg and anti-HBs negative, should they be classified as HBV infected and dialyzed together with HBsAg positive patients?

A1. An isolated anti-HBc positive would suggest occult hepatitis B infection or false positive result. Further testing e.g. HBV DNA may be used to confirm the low level infection. If HBV DNA is positive, the patient should be regarded as HBV infected and dialyzed together with HBsAg positive patients; on the contrary, if HBV DNA is negative, the patient should be regarded as susceptible to hepatitis B.

Q2. For patients who are anti-HBc positive, HBsAg, anti-HBs and HBV DNA negative, how often should HBsAg and HBV DNA be checked?

A2. HBsAg should be checked annually for patients on hemodialysis. HBV DNA should only be checked for clinical indications. (e.g. liver derangement after immune-suppressants are given)

Q3. Do I need to perform anti-HBc in retrospect for all existing patients on hemodialysis? If a patient is found to have positive anti-HBc and HBV DNA, do I need to perform contact tracing exercise for other susceptible patients who have been dialyzed with the case?

A3. Checking anti-HBc prior to hemodialysis is a recommendation in line with overseas guidelines [1-2;122]. Unnecessary HBV revaccination or booster vaccinations in patients with occult HBV infection can be avoided. However, for existing patients on hemodialysis who are negative for HBsAg and anti-HBs, there is no need to perform anti-HBc. Those patients who have occult hepatitis B infection usually have low level of viremia; to date, they are not implicated in HBV transmission in hemodialysis setting. Contact tracing exercise is not necessary.

Q4. Do I need all the serology test results before commencing dialysis, even in an urgent setting?

A4. It is preferable to obtain the serology test results prior to the first dialysis session. However, for urgent dialysis, the results may not be available. As long as standard precautions are practiced, the risk of transmission of blood borne pathogen should be low.
APPENDIX A: HAND HYGIENE TECHNIQUE

1. Palm to palm
2. Right palm over left dorsum with interlaced fingers & vice versa
3. Palm to palm with fingers interlaced
4. Backs of fingers to opposing palm with fingers interlocked
5. Rotational rubbing of right thumb clasped in left palm & vice versa
6. Rotational rubbing backwards and forwards with clasped fingers of right hand in left palm & vice versa
7. Wrists are rubbed
13. REFERENCE LIST

43. HA Central Committee on Infectious Diseases, Infection Control Branch (CHP). Fact sheet: Prevention and Control of *Staphylococcus aureus* with reduced susceptibility to Vancomycin, Jan 2003.

44. HA Central Committee on Infectious Diseases, Infection Control Branch (CHP). Fact sheet: Prevention and Control of Vancomycin Resistant Enterococcus (VRE), Nov 2011.

45. HA Central Committee on Infectious Diseases, Infection Control Branch (CHP). Fact sheet on the Control of Methicillin-Resistant *Staphylococcus aureus* (MRSA) in Hong Kong Hospitals, Dec 2006.

